Big Data for Public Policy

Regressions

<u>Malka Guillot</u>

ETH Zürich | <u>860-0033-00L</u>

■ Turn on recording

Table of contents

- 1. <u>Prologue</u>
- 2. <u>Linear Regression</u>
- 3. <u>Regularized Regression</u>
- 4. <u>Final Toughts</u>

Prologue

Coming back on the homework

Last week

- Model accuracy Today
- Regression analysis (continuous outcome)
- Our first ML project! Reference:
- <u>JWHT</u>, chap 3, 6.2
- Geron, chapter 2 Next week
- Classification (binary outcome)

Linear Regression as a Predictive Model

Linear Regression

 $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$

= one of the simplest algorithms for doing supervised learning
 A good starting point before studying more complex learning methods

Estimation by Ordinary Least Squares

 $RSS = ext{Residual sum of squares} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Minimizing RSS gives a closed form solution for the $\hat{\beta}_1, \cdots \hat{\beta}_p$ Most ML models do not have a a colsed form solution

Extensions of the Linear Model

Going further model's assumptions:

- the additive: the effect of changes in a predictor X_j on the response Y is independent of the values of the other predictors
- ullet linearity: the change in the response Y due to a one-unit change in X_j is constant

Interactions

- Adding interacted variable can help
- Should respect the hierarchy principle:
 - if an interaction is included, the model should always include the main effects as well

Non Linearity

- Include transformed versions of the predictors in the model
 - \Rightarrow Including polynomials in X may provide a better fit

Linear Models: pros and cons

- Pros:
 - Interpretability
 - Good predictive performance
 - Accuracy measures for
 - coefficient estimates (standard errors and confidence intervals)
 - $\circ\,$ the model
- Cons:
 - lacksquare When p>n
 - Tend to over-fit training data.
 - Cannot handle multicollinearity.

Generalization of the Linear Models

- Classification problems: logistic regression, support vector machines
- Non-linearity: nearest neighbor methods
- Interactions: Tree-based methods, random forests and boosting
- Regularized fitting: ridge regression and lasso

2-regressions

Regularized Regressions

Why regularization?

- Solution against over-fitting
- Allow High-Dimensional Predictors
 - p >> n: OLS no longer has a unique solution
 - x_i "high-dimensional" i.e. very many regressors
 - $\circ\,$ pixels on a picture

Adding a Regularization Term to the Loss Function L(.)

$$\hat{eta} = argmin_eta rac{1}{n} \sum_{i=1}^n L(h(x_i,eta),y_i) + \lambda R(eta)$$

- R(eta) = regularization function
 - $\widehat{R}(eta) = \sum_{i=1}^n p(eta_i)$ for p(.) the penalty function
- λ is a hyperparameter where higher values increase regularization

Different penalty functions p()

- Ridge (L2): $p(eta_j)=eta_j^2$
- LASSO (L1): $p(eta_j) = |eta_j|$
- Elastic Net: $p(eta_j) = lpha |eta_j| + (1-lpha) eta_j^2$
- Subset selection: $p(eta_j) = 1\{eta_j
 eq 0\}$

Gradient descent measures the local gradient of the error function, and then steps in that direction.

ightarrow Minimum in 0

Stochastic Gradient Descent

- 1. Picks a random instance in the training set
- 2. Computes the gradient only for that single instance
- Pro: SGD is much faster to train,
- Cons: bounces around even after it is close to the minimum.

 \rightarrow Compromise: mini-batch gradient descent, selects a sample of rows (a "mini-batch") for gradient compute

Varients of Gradient Descent

 \equiv

Ridge Regression

$$min_eta\sum_{i=1}^n(y_i-{\hat y}_i)^2+\lambda\sum_{j=1}^peta_j^2$$
 Where

- $\lambda > 0$ = penalty parameter
- covariates can be high-dimensionnal p>>N Trade-off, from the minimization of the sum of
- 1. RSS
- 2. shrinkage penalty: decreases with β_j
 - ightarrow relative importance given by λ

Ridge Regression: shrinkage to 0

24 of 40

Ξ

3/10/21, 22:26

Ridge: Variance-Bias Trade-Off

Squared bias (black), variance (green), [test] MSE (red)

Ridge vs. Linear Models

- when outcome and predictors are close to having a linear relationship, the OLS will have low bias but potentially high variance
 - ${\scriptstyle \bullet}\,$ small change in the training data \rightarrow large change in the estimates
 - worse with p close tp n
 - ${\scriptstyle \bullet }$ if p>n , OLS do not have a unique solution

 \rightarrow ridge regression works best in situations where the least squares estimates have high variance

LASSO

Overcome an important drawback of Ridge (all p predictors are included in the final model) LASSO proposes a method to build a model which just includes the most important predictors.

Better for interpretability than Ridge!

Lasso Coefficients

Lasso: Variance-Bias Trade-Off

Squared bias (black), variance (green), [test] MSE (red)

Constrained Regression

The minimization problem can be written as follow:

$$\sum_{i=1}^n (y_i-x_i'eta)^2 ext{ s.t. } \sum_{j=1}^p p(eta_j) \leq s,$$

Where

- Ridge: $\sum_{j=1}^p eta_j^2 < s o$ equation of a circle
- Lasso: $\sum_{j=1}^p |\dot{eta}_j| < s$ ightarrow equation of a diamond

Constraint Regions

Lasso Ridge

Elastic Net = Lasso + Ridge

$$MSE(eta) + \lambda_1 \sum_{j=1}^p |eta_j| + \lambda_2 \sum_{j=1}^p eta_j^2$$
 .

 λ_1 , $\lambda_2=$ strength of L1 (Lasso) penalty and L2 (Ridge) penalty

Selecting Elastic Net Hyperparameters

- Elastic net hyperparameters should be selected to optimize out-of-sample fit (measured by mean squared error or MSE).
- "Grid search"
 - ullet scans over the hyperparameter space ($\lambda_1 \geq 0, \lambda_2 \geq 0$),
 - ullet computes out-of-sample MSE for all pairs (λ_1,λ_2) ,
 - selects the MSE-minimizing model.

Evaluating Regression Models: R^2

MSE is good for comparing regression models, but the units depend on the outcome variable and therefore are not interpretable Better to use R^2 in the test set, which has same ranking as MSE but it more interpretable.

Final Toughts

Selecting the Tuning Parameter By Cross-Validation

- 1. Choose a grid of λ values
- 2. Compute the CV error for each lambda
- 3. Select the tuning parameter value for which the CV error is smallest
- 4. Re-fit the model using all available observation and the best λ

Data Prep for Machine Learning

- See Geron Chapter 2 for pandas and sklearn syntax:
 - imputing missing values.
 - feature scaling (Coefficient size depends on the scaling)
 - encoding categorical variables.
- Best practice
 - reproducible data pipeline
 - standardize coefficients

Other Supervised Machine Learning Methods

- Forward Selection,
- Backward Selection
- Trees and Forests
- Neural Networks
- Boosting
- Ensemble Methods

"Essentially, all models are wrong, but some are useful" -- George Box

Turn off recording